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Phase-ordering dynamics of the Gay-Berne nematic liquid crystal
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Phase-ordering dynamics in nematic liquid crystals has been the subject of much active investigation in
recent years in theory, experiments, and simulations. With a rapid quench from the isotropic to nematic phase,
a large number of topological defects are formed and dominate the subsequent equilibration process. Here we
present the results of a molecular dynamics simulation of the Gay-Berne model of liquid crystals after such a
quench in a system with 65536 molecules. Twist disclination lines as well as type-1 lines and monopoles were
observed. Evidence of dynamical scaling was found in the behavior of the spatial correlation function and the
density of disclination lines. However, the behavior of the structure factor provides a more sensitive measure
of scaling, and we observed a crossover from a defect dominated regime at small values of the wave vector to
a thermal fluctuation dominated regime at large wave vector.@S1063-651X~99!02812-3#

PACS number~s!: 61.30.Jf, 64.70.Md, 61.30.Cz
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I. INTRODUCTION

Topological defects formed during quenches from hig
temperature equilibrium phases are of interest in a wide
riety of fields from condensed matter physics to cosmolo
@1–4#. Uniaxial nematic liquid crystals are excellent mate
als for studying topological defects because of the variety
defects they possess and because of the ease with which
can be studied experimentally. Tables of processes involv
defects, such as found in Ref.@5#, are interesting both from
theoretical and experimental points of view. Simulations
which actual molecular configurations can be viewed a
tracked could greatly elucidate these processes and aid
general understanding of defect dynamics and phase o
ing. This paper represents a step toward these goals.

Simulations of defects in nematics have often used,
analogy with O(n) and other model simulations@6–8#, a
cell-dynamical scheme@9–11# in which the order paramete
c at each site is advanced in time according to a tim
dependent Ginsburg-Landau equation, within the one ela
constant approximation. Others@12,13# have performed
Monte Carlo simulations of a discretized Frank free ener
including allowance for elastic anisotropy and surface
choring. Still others@14–16# have investigated specific type
of defects or processes by directly creating the appropr
configurations as initial conditions and then evolving the s
tem. While all of these approaches have yielded fruitful
sults, it would certainly be advantageous to study defe
using more realistic off-lattice models with no prior bias t
ward forming any particular defect configurations. In th
paper we present results of a simulation of a quench of
Gay-Berne nematic liquid crystal@17#, a phenomenologica
PRE 601063-651X/99/60~6!/6831~10!/$15.00
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fluid model which mimics the behavior of ellipsoidal mo
ecules interacting through a combination of attractive a
repulsive forces. This model has proven over the past dec
to capture the essential physical features of real liquid cr
tals @18#, and it is an appropriate model for studying th
formation of topological defects with an off-lattice model.

This paper is organized as follows. In Sec. II we revie
the classification of nematic defects, the dynamical sca
hypothesis, and the scaling forms of the real-space corr
tion function and structure factor. In Sec. III we present t
computational details of our simulation, followed in Sec.
by a description of our defect-finding algorithms. Our resu
and a comparison with theoretical predictions is presente
Sec. V, which is followed in the Sec. VI by some concludin
remarks.

II. THEORETICAL BACKGROUND

A basic understanding of the defects in nematics g
back as far as the early work of Lehmann@19#, but the first
quantitative classification was given by Oseen@20#. Topo-
logical defect solutions are local minima of the Frank fr
energy

F5
1

2 E d3x@K11~“–n̂!21K22~ n̂–“3n̂!2

1K33un̂3~“3n̂…u2#, ~1!

wheren̂ is the nematic director. A three-dimensional uniax
nematic has stable point~monopole! and line ~disclination!
defects. The former include both radial~charge11! and
6831 © 1999 The American Physical Society
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6832 PRE 60BILLETER, SMONDYREV, LORIOT, AND PELCOVITS
hyperbolic~charge21) geometries@21# which are topologi-
cally equivalent. Disclination line defects are either of t
wedge or twist variety. Either variety is characterized by
6180° director rotation about the line~i.e., the defects have
charge61/2). A twist disclination loop is shown in Fig. 1
Note that the loop carries zero monopole charge and
director configuration is uniform at large distances from
loop. Wedge disclination loops, on the other hand, carr
net charge, and at large distances from them the dire
configuration is equivalent to that of a monopole of charge

Another type of line defect is characterized by direc
rotations of6360° ~type-1 line!, and is unstable to ‘‘escap
ing in the third dimension,’’ into a nonsingular configuratio
@22# ~see Fig. 2!. These escaped structures can still be
served experimentally@23–25#, however, and we can als
visualize them in our simulation.

The dynamical scaling hypothesis@26# for phase ordering
processes asserts that there is a characteristic lengthL(t)
~e.g., the domain size or defect separation! such that the sys
tem appears to be time independent~in a statistical sense!
when all lengths are rescaled byL(t). For nematics, theory
@26# predicts thatL(t);t1/2, where t is the time since the
ordering process began~e.g., the time since a temperatu
quench which leads to an isotropic-nematic transition!. The
disclination line densityrdisc ~the total length of disclination
lines per unit volume! should then scale asL(t)/„L(t)…3

;„L(t)…22;t21 and the monopole densityrmonop ~number
of monopoles per unit volume! as„L(t)…23;t23/2. Note that
defects occur at the intersections of domains growing w
differing director orientations~the Kibble mechanism@27#!.
Until the domains are large enough, defects are neither
defined nor well separated~one needs a defect separati

FIG. 1. ~a! Director configuration around a twist disclinatio
line ~pointing out of the page!. On the left of the defect, the directo
is pointing out of the page, parallel to the disclination line, while
the right the director lies in the plane of the page. Above and be
the defect, the directors are depicted in intermediate orientati
~b! Illustration of the difference in director orientation between
gions interior and exterior to the twist disclination line. The tw
regions have uniform orientations but are rotated with respec
each other by 90° along an axis perpendicular to the loop.

FIG. 2. ~a! Side view of a singular but unstable line with top
logical charge11 ~type-1 line!. ~b! Escaped type-1 line with direc
tors tilted into a nonsingular configuration.
a
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larger than the defect core size@11#!, so scaling is only as-
sumed to hold at ‘‘late’’ times. Experiments are genera
consistent with scaling predictions except perhaps in the
havior of monopoles@5,28,29#. Simulations also demonstrat
scaling @9,10,13#, but with calculated exponents somewh
different from theory and experiment. There have also b
indications in simulations that more than one characteri
length may be present@10#, but this is possibly just a finite-
size effect.

The real-space order parameter correlation funct
C(r ,t) and its Fourier transformS(k,t) are widely used
probes@26# of domain structure and dynamical scaling. F
the nematic order parameter

Qab~x!5 3
2 @ ûa~x!ûb~x!2 1

3dab#, ~2!

one has the definitions

C~r ,t !5

E ddx Qab~x,t !Qba~x1r ,t !

E ddx Qab~x,t !Qba~x,t !

, ~3a!

S~k,t !5E ddr eik–rC~r ,t !5
Qab~k,t !Qba~2k,t !

E ddx Qab~x,t !Qba~x,t !

.

~3b!

According to the scaling hypothesis@26#, the data for the
orientationally averagedC(r ,t) at different times should col-
lapse to a single curve when distances at timet are rescaled
by L(t). Similarly, S(k,t) should have a single, underlyin
scaling form: that is,

C~r ,t !5 f @r /L~ t !#, ~4a!

S~k,t !5Ldg@kL~ t !#. ~4b!

The late-time behavior ofS(k) is determined by the type
and number of defects present in the system. For nema
S(k) can be written in the form@30#

S~k!5rmonop

36p4

k6
1rdisc

3p3

k5
1

3

2

kBT

Kk2
, ~5!

where the right-hand side includes contributions from
monopoles, disclinations, and thermal fluctuations, resp
tively ~the nonsingular type-1 lines do not make a power-l
contribution to the structure factor!. Here K is the elastic
constant in the one-constant approximation. For thin nem
films ~i.e., two spatial dimensions, but with a thre
dimensional directorn̂) the monopole and disclination con
tributions to Eq.~5! are replaced by a single contributio
proportional tok24 arising from disclination points charac
terized by6180° director rotations. In the three-dimension
case the disclination contribution proportional tok25 appears
for twist and wedge disclination loops~as well as any curved
disclination loop segment! at wave vectorsk@R21, whereR
is the radius of the loop@30#. For smaller wave vectors, ther
is no power-law contribution to the structure factor from t
twist loops~recall that the director configuration is homog
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neous at large distances from the loop!, and wedge loops
contribute a term of the same form as the monopoles.
defect contributions to the structure factor above are spe
examples of Porod’s law@26#, which states that

S~k!;rk2x, ~6!

wherer is the defect density andx is the Porod exponen
given by 2d2D, whered is the number of spatial dimen
sions andD is the defect dimensionality~e.g., points have
D50 and lines haveD51). Experiments@31# show a good
scaling ofS(k) with an asymptotic exponent approximate
equal to 5, with the approach through effective expone
lying between 5 and 6@32#. Zapotocky and Goldbart@30#
showed that such a behavior would be consistent with
presence of sufficient numbers of monopoles or wedge
clination loops. However, experimentally the population
monopoles seems too low, and wedge disclinations are e
getically less preferable@33,34# than twist disclinations for
typical values of the nematic elastic constants~though the
former defects might be generated dynamically!. From Eq.
~5! we see that thermal fluctuations will dominate the str
ture factor for sufficiently large wave vectors satisfyin

( 1
2 kBT/Krdisc)k

2.1 ~assuming that monopoles are n
present in large numbers!. This behavior has not been seen
the experimental studies@35,36# carried out thus far. As dis
cussed in Ref.@30#, the scattering experiments were pe
formed over a time range where the defect density is su
ciently large that the crossover to the thermal regime is
evident for wave vectors in the visible range.

III. SIMULATION DETAILS

We performed a molecular dynamics~MD! simulation us-
ing the Gay-Berne model@17#, an intermolecular potentia
similar to the simple Lennard-Jones potential but extende
model the anisotropic mesogen shape. The complete G
Berne potential is as follows@37#:

U~ ûi ,ûj , r̂ !54«~ ûi ,ûj , r̂ !

3F H s0

r 2s~ ûi ,ûj , r̂ !1s0
J 12

2H s0

r 2s~ ûi ,ûj , r̂ !1s0
J 6G , ~7!

where ûi and ûj give the orientations of the long axes
moleculesi and j, respectively, andr is the intermolecular
vector (r5r i2r j). The parameters(ûi ,ûj , r̂ ) is the intermo-
lecular separation at which the potential vanishes, and
represents the shape of the molecules. Its explicit form i

s~ ûi ,ûj , r̂ !5s0F12
1

2
xH ~ r̂•ûi1 r̂•ûj !

2

11x~ ûi•ûj !

1
~ r̂•ûi2 r̂•ûj !

2

12x~ ûi•ûj !
J G21/2

, ~8!

wheres05ss ~defined below!, andx is
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x5$~se /ss!
221%/$~se /ss!

211%. ~9!

Herese is the separation between two molecules when th
are oriented end to end, andss the separation when the mo
ecules are presented side by side. The well depth«(ûi ,ûj , r̂ ),
representing the anisotropy of the attractive interactions
written as

«~ ûi ,ûj , r̂ !5«0«n~ ûi ,ûj !«8m~ ûi ,ûj , r̂ !, ~10!

where

«~ ûi ,ûj !5$12x2~ ûi•ûj !
2%21/2 ~11!

and

«8~ ûi ,ûj , r̂ !512
1

2
x8H ~ r̂•ûi1 r̂•ûj !

2

11x8~ ûi•ûj !
1

~ r̂•ûi2 r̂•ûj !
2

12x8~ ûi•ûj !
J ,

~12!

with x8 defined in terms of«e and«s , in the end-to-end and
side-by-side well depths, respectively, as

x85$12~«e /«s!
1/m%/$11~«e /«s!

1/m%. ~13!

The overall energy scale is set by the value of«0. Some
representative plots of the Gay-Berne potential energy cu
are shown in Fig. 3.

For the adjustable parameters, we used the values
gested by Berardiet al. @38#: m51,n53,se /ss53, and
«s /«e55. These values yield a nematic phase over a wi
range of temperatures, compared to the original parametr
tion chosen by Gay and Berne@17#. The temperature was
controlled by velocity rescaling@39#, and the dimensionles
densityr* [rso

3 was fixed at 0.3 with the dimensions of th
simulation box in the ratio 2:2:1. Periodic boundary con
tions were applied. The system was equilibrated at dim
sionless temperatureT* 53.6 (T* [kBT/«o) in the isotropic
phase for 130 000 MD time steps@with a dimensionless time
stepDt* 50.004,Dt* [(mso

2/«o)21/2#, and then a quench to
T* 53.2 was implemented~the nematic-isotropic transition

FIG. 3. Potential energy curves for the Gay-Berne model us
the parameters cited in the text. The horizontal axis is in units ofso

and the vertical axis is in units of«o. Curves are shown for four
sample molecular pair configurations as indicated.
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6834 PRE 60BILLETER, SMONDYREV, LORIOT, AND PELCOVITS
temperature is approximately 3.5!. The system gradually
came to equilibrium in the nematic phase with the ord
parameterS ~the largest eigenvalue ofQab) saturating at a
value of 0.69 over the next 100 000 steps. We used a dom
decomposition approach on the Cray T3E at the San Di
Supercomputing Center. Briefly, the domain decomposit
approach involves dividing up the simulation volume into
number of cells, each controlled by a different processor~we
used 64 cells!. Because the Gay-Berne potential is sh
ranged, most of the intermolecular interactions invo
same-cell molecules; thus only the relatively small num
of molecules near cell boundaries will require interproces
communications. The cell scheme and the required com
nications are somewhat difficult to implement, but provi
very significant computational speedups. A computatio
scheme similar to ours is described in more detail in R
@40# ~although we used a slightly different communicati
scheme in which an additional map tracking the specific s
cells to be transferred between specific neighbors was im
mented!. We obtained timings virtually identical to those r
ported in the latter reference~on the order of 1 s per time
step with a 64-node partition of the Cray!. Our computation
time increases linearly with the number of particles and w
the number of processing elements, indicating the good s
ability of our code.

IV. DEFECT-FINDING METHODS

A preliminary step for locating defects is to break t
system into a lattice of cubic bins. Note that the creation o
lattice is strictly for convenience in defect finding; the tim
evolution of the system allows for complete translation
freedom. Even experiments, of course, have ‘‘binning’’ i
herent in the resolution of the optical microscopy. With
each bin, the order parameter tensorQab @Eq. ~2!#, was cal-
culated, its largest eigenvalue taken as the local order pa
eterS and the corresponding eigenvalue as the local dire
n̂. The bin size was chosen so that the core size of the
clinations, determined from the distance over whichS
dropped significantly below the background value, was
the order of one lattice spacing. In our case, this resulted
1631638 lattice, each bin holding roughly 30 molecules.
is with this lattice of orientation vectors that we began a
lyzing planes parallel to thex, y, andz axes for the presenc
of defects. Note that while it is convenient to work with th
orientationvectorson the lattice, we must remember that t
actual directors areheadless~expressing the symmetry upo
rotation by 180° about an axis perpendicular to the direct!,
and so some care must be taken to account for this.

A nice method of searching for disclinations was intr
duced in Ref.@10# ~see also Ref.@41#!. Consider the directors
at the corners of a square~one of the faces of a cube! in our
three–dimensional lattice. The idea is to track the course
the intersections of these vectors with the order param
sphere~actually the projective planeRP2) as one moves
around the corners of the real-space square~Fig. 4!. Starting
with the intersection ofn̂A with the sphere, as the next poin
one then takes either the intersection ofn̂B or 2n̂B , which-
ever is closest ton̂A’s intersection. Once this point is dete
mined, eithern̂C or 2n̂C is used, depending on the proximit
r
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to the previously defined point, and so on. Once the last p
~from cornerD) is determined, one looks at whether its i
tersection is in the same hemisphere as that of the sta
point. If so, no defect is present—the path in order param
space is deformable to a single point, i.e., a uniform confi
ration. If the first and last points are in different hemispher
however, then a disclination line is taken to cut through
center of the square and is oriented perpendicular to
plane of the square.

To find escaped type-1 lines, we performed a similar p
cedure, except that we measured the actual arclength s
out as one moves from each intersection to the ne
Arclengths greater thanp are counted as type-1 lines if th
lattice square has not already been determined to hold a
clination ~obviously, there is some overlap in the method!.
The arclengthp corresponds to an escaped structure sim
to that of Fig. 2 with an opening angle of about 30°. Expe
mentally, smaller opening angles are observable as typ
lines, but smaller cutoff values of the arclength produced
many random type-1 line segments unconnected with e
other or with disclinations, a situation not in accord wi
experiments.

Finally, to look for monopoles, we used the method fro
@9#. Each of the six faces of a lattice cube is divided into tw
equal area triangles by the face diagonal. The directors a
three corners of each of the 12 triangles are mapped to po
on the order parameter sphere, forming spherical triang
The total area of the 12 spherical triangles formed by t
mapping is then computed. If this total area is greater th
2p, a monopole is assumed to lie inside the lattice cu
Note that in all these defect-finding procedures, one mus
careful to apply periodic boundary conditions to the ed
lattice sites.

One could also consider simulating the effect of cross
polarizers on individual planes. We used the method of R
@42,43# which, phrased in the language of the Stokes para
eters, uses Mu¨ller matrices to simulate the effect of a grou
of molecules on the polarization of incoming light. In th
method, one must set values for the ordinary and extrao
nary refractive indices; we used typical experimental valu
between 1.5 and 2@44#. The remaining free parameter, th
ratio of the thickness of the cell to the wavelength of ligh
was chosen to be the value which makes the calculated
going intensity for molecules oriented at 45° to the cross
polarizer directions equal to 1; we used a value of 2.5.
sualizing the resulting contour plots is aided by choosing
exponential distribution of contour values in order to sharp

FIG. 4. The disclination-finding algorithm. The directors at t
corners of the lattice cube face shown on the left are tracked on
order parameter space sphere shown on the right. The diam
AA8, BB8, CC8, andDD8 correspond to the axes of the headle
director at the real-space lattice sitesA, B, C, andD, respectively.
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the dark areas~the ‘‘brushes’’ @44#!. This method did yield
planes in which two clear brushes met at fairly well-localiz
points ~Fig. 5!, indicating the presence of a disclination, b
in general the brushes and intersections were simply not
determined enough to be useful. We estimate that an ord
magnitude increase in the number of bins~corresponding to
several million Gay-Berne particles! would be required to
use this crossed-polarizer approach quantitatively.

V. RESULTS

A. Coarsening sequence

With the methods described, we observed a coarse
sequence—compare Fig. 6 with similar figures in R
@5#—which exhibited most of the general behaviors obser
experimentally@5#. An animation of our results is availabl
on our web site@45#. Shortly after the quench, there was
dense tangle of defect lines. This tangle gradually thinn
out, and we could clearly identify and follow individual de
fect loops. With the exception of one wedge disclination li
@46# running through the sample, all of the disclination lin
were of twist type~see Fig. 7!, and, with periodic boundary
conditions, formed closed loops. The presence of twist li
is consistent@33,34# with the relative values of the elasti
constants in the Gay-Berne nematic@47#, namely,K2,(K1
1K3)/2. Apart from the exception mentioned above we s
no evidence of dynamically generated wedge disclinat
lines that might contribute substantially to the structure f
tor. Combination, separation, and collapse of the loops w
all observed. The disclination loops appeared to experie
minimal center-of-mass displacement and were relativ
long-lived structures. Type-1 lines took the form of sing
line segments or small partial loops virtually always co
nected to disclination line segments and often form
bridges~much like theT intersections of@5#! between discli-
nation segments from the same or distinct loops. Typ

FIG. 5. Simulated crossed-polarizer image with actual direc
configuration superimposed. The crossed-polarizer image is th
sult of applying the Mu¨ller matrix method to the single lattice plan
shown. The disclination line~with topological charge 1/2! at the top
center of the image is clearly indicated by two brushes. The
tance between neighboring directors is 4.8so .
ll
of
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d
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lines tended to fluctuate on much shorter time scales t
disclinations, which seems reasonable given that the for
are not topologically stable. One interesting observation
that type-1 lines often appeared as precursors to or remn
of the motion of disclination line segments. For example,
appearance of a type-1 line or several connected lines jut
out from a disclination was often followed by a kink or ben
developing in the disclination line at that point. Similarly, th
removal of kinks or bends often left behind type-1 lines f
some period of time. The type-1 lines seemed to be initia
defining, and afterwards retaining, a memory of the discli
tion path. Also, the emergence of distinct disclination loo

r
re-

-

FIG. 6. Coarsening sequence at times~a! t52, ~b! t514, ~c! t
525, and~d! t537, with t50 corresponding to the instantaneo
temperature quench from the isotropic to the nematic phase. F
squares represent point defects, thin lines represent type-1 lines
thick lines ~for emphasis! represent disclinations. Note that wit
periodic boundary conditions, all disclination lines form clos
loops. The spacing between the large tick marks is 9.6so , and each
defect line segment measures 4.8so . An animation of the coarsen
ing sequence is available on our web site@45#.

FIG. 7. Indication of a twist disclination. A single lattice plan
of directors is shown with disclinations indicated as thick line
Dark areas indicate local directors perpendicular to the global
rector ~along the vertical axis!, while light areas indicate paralle
orientations. The dark region in the center of the figure falls ins
a disclination loop, clearly indicating a twist disclination. Compa
with Fig. 1~b!.
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6836 PRE 60BILLETER, SMONDYREV, LORIOT, AND PELCOVITS
from localized tangles often included the breaking of num
ous type-1 ‘‘bonds’’ between the loops.

The monopoles we observed fluctuated even more rap
than the type-1 lines, although in many cases their positi
remained constant, on average, over relatively longer tim
Because of their fluctuations, it is difficult to make any re
able statements about specific monopole behaviors suc
monopole-antimonopole annihilation, for example. We ne
observed monopole formation upon disclination loop c
lapse, a result consistent with the presence of only twist
clination loops. All of the above processes are best obse
in the animations we provide on our web site@45#. The total
line length of disclination lines and type-1 lines, as well
the number of monopoles, is plotted in Fig. 8 as a function
time. The total number of disclination loops is plotted as
function of time in Fig. 9.

B. Real-space correlation functionC„r ,t…

To calculate the correlation functionC(r ,t), @Eq. ~3a!#,
we reduced our bin dimensions by a factor of 2~yielding a

FIG. 8. Time behavior of the various defect quantities: to
length of disclination lines and type-1 lines and total number
monopoles. The units of the time axis are thousands of time s
after the quench.

FIG. 9. Number of disclination loops as a function of time, wi
time measured in thousands of time steps after the quench.
-

ly
s
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r
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s
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32332316 lattice size! to obtain a larger data set. We ob
tained curves forC(r ,t) at times spanning the entire coar
ening process. Motivated by the dynamical scaling hypo
esis@Eq. ~4a!#, we attempted to collapse our data to a sing
curve with appropriate rescaling of distances. Fromt513 ~in
units of thousands of steps since the temperature que!
until t540, when nearly all of the defects disappeared,
C(r ,t) curves for different times collapse to a single cur
@Fig. 10~a!# upon rescaling distances by a length scaleL(t)
chosen so thatC„r 5L(t),t…51/2. This particular choice
L(t) for the characteristic length scale was first suggeste
@10#, and is the most accurate to implement numerically. T
time dependence ofL(t) is shown in Fig. 10~b!. Our system
is not large enough to extract a reliable power law for t
growth of L(t). However, according to the dynamic scalin
hypothesis, the lengthL(t) defined by the above criterion
should differ at most by prefactors or subdominant contrib
tions at late times from other characteristic length scales
the system. For example, as we noted in Sec. II, the dis
nation line density should scale as„L(t)…22. In Fig. 11 we
plot the disclination line density as a function ofL(t), over

l
f
ps

FIG. 10. a! Correlation functionC(r ,t) for times ranging from
t513 to 40 with distances rescaled by the characteristic leng
defined byC„r 5L(t)…51/2. ~b! Time behavior of the characteristi
lengthL(t). Note that the data in this figure were obtained by us
a smaller bin size~corresponding to a 32332316 lattice! than the
previous figures. The units of the time axis in both figures
thousands of time steps after the quench.
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the range of times (t513–40) where we found good scalin
of C(r ,t). A least squares fit yields an exponent 1.
60.23, consistentwith dynamical scaling. However, th
range of times over which coarsening occurs is too limi
~due to the small system size! to allow us to fully assess th
validity of the dynamical scaling hypothesis. Similarly, whi
the collapse of the correlation function data to a single s
ing curve is consistent with the predictions of dynamic
scaling, the range of distances and times is too limited
provide more definitive support for the hypothesis. Furth
more, as we discuss in Sec. V C, when we examine the st
ture factor dynamical scaling may in fact be breaking do
in the range„r /L(t)…,1, even though this is not eviden
from the scale of the plot ofC(r ,t).

FIG. 11. Log-log plot of disclination line density~line length per
unit volume! vs the characteristic lengthL shown in Fig. 10~b!. The
straight line is a least squares fit with slope21.9960.23. The range
of L shown corresponds to the time ranget513–40, where scaling
behavior ofC(r ,t) is observed as shown in Fig. 10~a!.

FIG. 12. Structure factor as a function ofk at time t527. The
exponents of the power-law fits at small and largek are 4.3 and 1.8
respectively. At smallk the structure factor is dominated by defec
while at largek thermal fluctuations dominate.
d

l-
l
o
-
c-

n

C. Structure factor S„k,t…

We computed the structure factorS(k,t) @Eq. ~3b!#, by
first evaluating the Fourier transform of the nematic ord
parameter@Eq. ~2!#:

Qab~k!5
V

N (
i

3

2 F ûiaûib2
1

3
dabGexp~ ik•r !, ~14!

whereV andN are the system volume and number of mo
ecules, respectively. As in Sec. V B we used a 32332316
lattice. The wave vectorsk have components which are mu

FIG. 13. Structure factor as a function ofk at time t540, near
the end of the coarsening sequence. The crossover betwee
thermal fluctuation regime at largek and the defect dominated re
gime at smallk occurs at smaller values ofk than at earlier times in
the coarsening sequence~compare with Fig. 12!. The straight line is
a fit to the data at large values ofk. Due to the relatively small
number of data points in the defect dominated regime at smallk, we
have not attempted a power-law fit in that regime as we did in
previous figure.

FIG. 14. Structure factor as a function ofk at time t570, after
all of the defects have disappeared. The data are fit with an e
nent of 1.7. With the coarsening process completed, only ther
fluctuations contribute to the structure factor.
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tiples of the minimum values commensurate with the M
cell sizes in each direction. Motivated by Eq.~4b! for the
structure factor, we plotted our results in log-log form. Re
resentative results are shown in Figs. 12, 13, and 14, w
we have computedS(k) for values ofk>2p/16, the mini-
mum commensurate value along the shortest dimensio
the cell, and less thank.2. For values ofk larger than 2 we
are unable to fit our data to the long wavelength express
@Eq. ~3b!# for S(k). Figure 12 corresponds to timet527
when there are still a sizable number of defects, Fig.
corresponds tot540 near the end of the coarsening s
quence, and Fig. 14 corresponds tot570 well beyond the
end of the coarsening sequence. The data in the latter fi
can be fit over nearly the entire range ofk by a power law
S(k);k21.7, consistent with a purely thermal fluctuatio
contribution to the structure factor. On the other hand,
note that, in the figure corresponding to a time midw
through the coarsening process@Fig. ~12!#, there is an appar
ent crossover in the behavior ofS(k) as a function ofk. In
Fig. 15 we show the power laws obtained at small and la
values ofk during most of the coarsening sequence and
yond. For small values ofk, S(k) can be fit to the power-law
form S(k);k2x @Eq. ~6!#, with the average value of th
Porod exponentx given by 4.5, while at largek the average
exponent is 1.9. This crossover behavior is consistent at l
in part with the predictions of Ref.@30#; that is, at large
values ofk during the coarsening process~and at all values

FIG. 15. Values of the exponents@Eq. ~6!# used to fit the struc-
ture factorS(k) at small and large values ofk as a function of time
~the units of time are as in the previous figures!. Topological defects
dominate the smallk behavior until the defects disappear aroundt
540, while thermal fluctuations dominate at largek. At later times
thermal fluctuations are the only contribution toS(k) for all k, and
a single exponent fits the entire range ofk. During the last stages o
the coarsening sequence~betweent530 and 40!, we do not have
sufficient numbers of data points to fit the smallk behavior because
the crossover to the thermal fluctuation regime occurs at smak.
However, the largek behavior continues to be fit well with a
exponent of approximately 2~see Fig. 13!. The solid and dashed
lines indicate the average values of the exponents used to fi
large and smallk regimes ofS(k) during the coarsening sequenc
the values are 1.9 and 4.5 in these regimes, respectively. The d
dotted curve indicates the average exponent, 1.9, that fits all o
k data after the defects have disappeared.
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of k when the process is complete! thermal fluctuations
dominate, while at smallk during the coarsening process th
defects dominate the structure factor behavior. While
value of 1.9 for the exponent at largek is consistent with
thermal fluctuation dominated behavior, it is less clear h
to interpret the value of 4.5 for the Porod exponent that
obtain at smallk. As indicated in Fig. 8, the total disclinatio
line length is in general an order of magnitude greater th
the number of monopoles, i.e.,rdisc.10rmonop. In spite of
this order of magnitude difference in densities, we see fr
Eq. ~5! that the monopoles and disclinations should ma
comparable contributions to the structure factor in the ra
of k values used in our plots. In principle, then, the structu
factor at small values ofk during the coarsening proces
should involve a sum of two power-law terms correspond
to the monopoles and disclinations. Because the twist dis
nation lines yield an exponent of 5 and monopoles yield
exponent of 6, we would expect to observe an effective
ponent between 5 and 6~with our small range ofk values the
two individual contributions will not be distinguishable!.
Thus it is not clear why we obtain an exponent betwee
and 5. One possibility is that we are seeing two-dimensio
effects due to the anisotropic shape of our MD cell~recall
that point disclinations in a two-dimensional nematic sho
yield a power law of 4!. It is also possible that we hav
overestimated the number of monopoles. As discussed ab
in Sec. V A, the monopoles fluctuated quite rapidly, and it
possible that some apparent monopoles that we ident
using the algorithm described in Sec. IV are not in fact
pological defects. Our exponent of 4.5 may in fact cor
spond to a crossover regime between point disclinati
~with an exponent of 4! and twist disclination lines~with an
exponent of 5!, with monopoles playing little or no role.

The crossover value ofk separating the defect dominate
and thermal fluctuation dominated regimes is of the orde
magnitude predicted by Eq. ~5!, namely, k
;(2p3Krdisc/kBT)1/3;(24p4rmonop/kBT)1/4. This cross-
over value decreases with time, as can be seen by compa
Fig. 12 with the later time data of Fig. 13. The crossov
value ofk in the latter figure is about half of the correspon
ing value in the former figure, consistent with the relati
densities of defects at the two times.

As discussed in Ref.@30#, we would expect the crossove
to the thermal fluctuation dominated regime to be accom
nied by a breakdown of the dynamical scaling hypothe
because it assumes that thermal fluctuations play no rol
the behavior of real-space or Fourier-space correlation fu
tions. To test this expectation we used our data forS(k,t)
during a time range spanning the coarsening process to
the scaling functiong defined in Eq.~4b!. This plot is shown
in Fig. 16, where we clearly see the breakdown of scaling
kL(t) greater than approximately 4 or 5, corresponding
values of r /L(t) less than approximately 1. Note that th
numerical range ofg is much larger than the range off, the
corresponding scaling function forC(r ,t) @Eq. ~4a! and Fig.
10#, so that the breakdown in scaling is easier to see in
structure factor data. The wider horizontal range forkL(t)
compared tor /L(t) also makes the breakdown clearer.

Note that, in our plotsk>R21 for nearly all values of the
disclination loop radiusR. Thus in this regime we expect t
see a power-law contribution toS(k) from the twist discli-

he
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he
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nation loops. With a simulation of a larger system it might
possible to study the regimek!R21, where the twist discli-
nation loops are expected to make no contribution toS(k), as
discussed in Sec. II.

VI. CONCLUSIONS

In conclusion, we have shown that the Gay-Berne pot
tial is fruitful for studying the behavior of the wide variety o
topological defects generated in a quench from the isotro
phase to the nematic phase. At least for the Gay-Berne
rameters chosen here, twist disclination loops were the do
nant defects, and we did not, aside from possibly one
lated line, observe dynamically generated wedge disclina
loops. This result, if it is not an artifact of our relative
small system size, has important implications for the int

FIG. 16. Plot of the dynamical scaling functiong
5S(k,t)/„L(t)…3 as a function of the scaling variablekL(t) @see
Eq. ~4b!#. Note the clear breakdown of scaling for large values
kL(t).
ce
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pretation of scattering experiments on quenched nema
following upon the ideas of Ref.@30#. As we discussed in
Sec. II, light scattering measurements of the structure fa
exhibit dynamical scaling with an effective exponent b
tween 5 and 6. According to theory, twist disclination lin
should yield an exponent of 5, whereas monopoles
wedge disclination lines yield an exponent of 6. Howev
the density of monopoles in experimental systems is so sm
that their contribution to the structure factor is negligib
and wedge disclination lines are not energetically favorab
It was suggested in Ref.@30# that dynamically generated
wedge disclination lines might account for the experime
tally observed exponent lying between 5 and 6. Given
absence of such lines in our simulations, we believe tha
explanation of the experimentally observed exponent is
lacking.

Our computed real-space correlation function exhibi
good dynamical scaling over the limited range of distan
available, though the structure factor appears to be provid
more sensitive test of scaling. In our structure factor data
could clearly see the breakdown of dynamical scaling a
the crossover to the thermal fluctuation dominated behav
in accord with the predictions of Zapotocky and Goldb
@30#. Clearly, simulations of even larger Gay-Berne syste
would be of interest to further address the issues raised h
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